

Best Practices for Gathering

Optimizer Statistics with Oracle

Database 19c

ORACLE WHITE PAPER / DECEMBER 9, 2019

2 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

INTRODUCTION

The Oracle Optimizer examines all of the possible plans for a SQL statement and picks the one with

the lowest cost, where cost represents the estimated resource usage for a given plan. In order for

the optimizer to accurately determine the cost for an execution plan it must have information about

all of the objects (table and indexes) accessed in the SQL statement as well as information about

the system on which the SQL statement will be run.

This necessary information is commonly referred to as optimizer statistics. Understanding and

managing optimizer statistics is key to optimal SQL execution. Knowing when and how to gather

statistics in a timely manner is critical to maintaining acceptable performance. This whitepaper is the

second of a two part series on optimizer statistics. The part one of this series, Understanding

Optimizer Statistics with Oracle Database 19c, focuses on the concepts of statistics and will be

referenced several times in this paper as a source of additional information. This paper will discuss

in detail, when and how to gather statistics for the most common scenarios seen in an Oracle

Database. The topics are:

¶ How to gather statistics

¶ When to gather statistics

¶ Improving the quality of statistics

¶ Gathering statistics more quickly

¶ When not to gather statistics

¶ Gathering other types of statistics

DISCLAIMER

This document in any form, software or printed matter, contains proprietary information that is the

exclusive property of Oracle. Your access to and use of this confidential material is subject to the

terms and conditions of your Oracle software license and service agreement, which has been

executed and with which you agree to comply. This document and information contained herein may

not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written

consent of Oracle. This document is not part of your license agreement nor can it be incorporated

into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for

the implementation and upgrade of the product features described. It is not a commitment to deliver

any material, code, or functionality, and should not be relied upon in making purchasing decisions.

The development, release, and timing of any features or functionality described in this document

remains at the sole discretion of Oracle.

Due to the nature of the product architecture, it may not be possible to safely include all features

described in this document without risking significant destabilization of the code.

3 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

TABLE OF CONTENTS

Introduction .. 2

How to Gather Statistics .. 4

When to Gather Statistics .. 9

Assuring the Quality of Optimizer Statistics ... 16

Gathering Statistics More Quickly .. 18

When Not to Gather Statistics ... 20

Gathering Other Types of Statistics ... 22

Conclusion ... 24

References .. 25

4 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

HOW TO GATHER STATISTICS

Strategy

The preferred method for gathering statistics in Oracle is to use the automatic statistics gathering. If you already have a well-

established, manual statistics gathering procedure then you might prefer to use that instead. Whatever method you choose to use, start

by considering whether the default global preferences meet your needs. In most cases they will, but if you want to change anything then

you can do that with SET_GLOBAL_PREFS. Once you have done that, you can override global defaults where necessary using the

DBMS_STATS “set preference” procedures. For example, use SET_TABLE_PREFS on tables that require incremental statistics or a

specific set of histograms. In this way, you will have declared how statistics are to be gathered, and there will be no need to tailor

parameters for individual “gather stats” operations. You will be free to use default parameters for gather table/schema/database stats

and be confident that the statistics policy you have chosen will be followed. What’s more, you will be able to switch freely between using

auto and manual statistics gathering.

This section covers how to implement this strategy.

Automatic Statistics Gathering

The Oracle database collects statistics for database objects that are missing statistics or have “stale” (out of date) statistics. This is

done by an automatic task that executes during a predefined maintenance window. Oracle internally prioritizes the database objects

that require statistics, so that those objects, which most need updated statistics, are processed first.

The automatic statistics-gathering job uses the DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC procedure, which uses the

same default parameter values as the other DBMS_STATS.GATHER_*_STATS procedures. The defaults are sufficient in most cases.

However, it is occasionally necessary to change the default value of one of the statistics gathering parameters, which can be

accomplished by using the DBMS_STATS.SET_*_PREF procedures. Parameter values should be changed at the smallest scope

possible, ideally on a per-object basis. For example, if you want to change the staleness threshold for a specific table, so its statistics

are considered stale when only 5% of the rows in the table have changed rather than the default 10%, you can change the

STALE_PERCENT table preference for that one table using the DBMS_STATS.SET_TABLE_PREFS procedure. By changing the default

value at the smallest scope you limit the amount of non-default parameter values that need to be manually managed. For example,

here’s how you can change STALE_PRECENT to 5% on the SALES table:

exec dbms_stats.set_table_ prefs(user,'SALES','STALE_PERCENT','5')

To check what preferences have been set, you can use the DBMS_STATS.GET_PREFS function. It takes three arguments; the name of

the parameter, the schema name, and the table name:

select dbms_stats.get_prefs('STALE_P ERCENT',user,'SALES') stale_percent
from dual ;

STALE_PERCENT

5

5 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

SETTING DBMS_STATS PREFERENCES

As indicated above, it is possible to set DBMS_STATS preferences to target specific objects and schemas to modify the behavior of auto statistics

gathering where necessary. You can specify a particular non-default parameter value for an individual DBMS_STATS.GATHER_*_STATS

command, but the recommended approach is to override the defaults where necessary using “targeted” DBMS_STATS.SET_*_PREFS

procedures.

A parameter override can be specified at a table, schema, database, or global level using one of the following procedures (noting that

AUTOSTATS_TARGET and CONCURRENT can only be modified at the global level):

SET_TABLE_PREFS

SET_SCHEMA_PREFS

SET_DATABASE_PREFS

SET_GLOBAL_PREFS

Traditionally, the most commonly overridden preferences have been ESTIMATE_PERCENT (to control the percentage of rows sampled)

and METHOD_OPT (to control histogram creation), but estimate percent is now better left at its default value for reasons covered later in

this section.

The SET_TABLE_PREFS procedure allows you to change the default values of the parameters used by the

DBMS_STATS.GATHER_*_STATS procedures for the specified table only.

The SET_SCHEMA_PREFS procedure allows you to change the default values of the parameters used by the

DBMS_STATS.GATHER_*_STATS procedures for all of the existing tables in the specified schema. This procedure actually calls the

SET_TABLE_PREFS procedure for each of the tables in the specified schema. Since it uses SET_TABLE_PREFS, calling this procedure

will not affect any new objects created after it has been run. New objects will pick up the GLOBAL preference values for all parameters.

The SET_DATABASE_PREFS procedure allows you to change the default values of the parameters used by the

DBMS_STATS.GATHER_*_STATS procedures for all of the user-defined schemas in the database. This procedure actually calls the

SET_TABLE_PREFS procedure for each table in each user-defined schema. Since it uses SET_TABLE_PREFS, this procedure will not

affect any new objects created after it has been run. New objects will pick up the GLOBAL preference values for all parameters. It is also

possible to include the Oracle owned schemas (sys, system, etc) by setting the ADD_SYS parameter to TRUE.

The SET_GLOBAL_PREFS procedure allows you to change the default values of the parameters used by the

DBMS_STATS.GATHER_*_STATS procedures for any object in the database that does not have an existing table preference. All

parameters default to the global setting unless there is a table preference set, or the parameter is explicitly set in the GATHER_*_STATS

command. Changes made by this procedure will affect any new objects created after it has been run. New objects will pick up the

GLOBAL_PREFS values for all parameters.

6 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

The DBMS_STATS.GATHER_*_STATS procedures and the automated statistics gathering task obeys the following hierarchy for

parameter values; parameter values explicitly set in the command overrule everything else. If the parameter has not been set in the

command, we check for a table level preference. If there is no table preference set, we use the GLOBAL preference.

Figure 1: DBMS_STATS.GATHER_*_STATS hierarchy for parameter values

Oracle Database 12 Release 2 includes a new DBMS_STATS preference called PREFERENCE_OVERRIDES_PARAMETER. Its effect is

illustrated in Figure 2. When this preference is set to TRUE, it allows preference settings to override DBMS_STATS parameter values. For

example, if the global preference ESTIMATE_PERCENT is set to DBMS_STATS.AUTO_SAMPLE_SIZE, it means that this best-practice

setting will be used even if existing manual statistics gathering procedures use a different parameter setting (for example, a fixed

percentage sample size such as 10%).

Figure 2: Using DBMS_STATS preference PREFERENCE_OVERRIDES_PARAMETER

7 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

ESTIMATE_PERCENT

The ESTIMATE_PERCENT parameter determines the percentage of rows used to calculate the statistics. The most accurate statistics

are gathered when all rows in the table are processed (i.e. a 100% sample), often referred to as computed statistics. Oracle Database

11g introduced a new sampling algorithm that is hash based and provides deterministic statistics. This new approach has an accuracy

close to a 100% sample but with the cost of, at most, a 10% sample. The new algorithm is used when ESTIMATE_PERCENT is set to
AUTO_SAMPLE_SIZE (the default) in any of the DBMS_STATS.GATHER_*_STATS procedures. Prior to Oracle Database 11g, DBAs

often set the ESTIMATE_PRECENT parameter to a low value to ensure that the statistics would be gathered quickly. However, without

detailed testing, it is difficult to know which sample size to use to get accurate statistics. It is highly recommended that from Oracle

Database 11g onwards that the default AUTO_SAMPLE_SIZE is used for ESTIMATE_PRECENT. This is especially important because

the newer histogram types (HYBRID and Top-Frequency) can only be created if an auto sample size is used.

Many systems still include old statistics gathering scripts that manually set estimate percent, so when upgrading to Oracle Database

19c, consider using the PREFERENCE_OVERRIDES_PARAMETER preference (see above) to enforce the use of auto sample size.

METHOD_OPT

The METHOD_OPT parameter controls the creation of histograms1 during statistics collection. Histograms are a special type of column

statistic created to provide more detailed information on the data distribution in a table column.

The default and recommended value for METHOD_OPT is FOR ALL COLUMNS SIZE AUTO, which means that histograms will be

created for columns that are likely to benefit from having 2them. A column is a candidate for a histogram if it is used in equality or range

predicates such as WHERE col1= 'X' or WHERE col1 BETWEEN 'A' and 'B' and, in particular, if it has a skew in the distribution of

column values. The optimizer knows which columns are used in query predicates because this information is tracked and stored in the

dictionary table SYS.COL_USAGE$.

Some DBAs prefer to tightly control when and what histograms are created. The recommended approach to achieve is to use

SET_TABLE_PREFS to specify which histograms to create on a table-by-table basis. For example, here is how you can specify that

SALES must have histograms on col1 and col2 only:

begin
 dbms_stats.set_table_prefs(
 user,
 'SALES',
 'method_opt',
 'for all columns size 1 for columns size 254 col1 col2');
end;
/

It is possible to specify columns that must have histograms (col1 and col2) and, in addition, allow the optimizer to decide if additional

histograms are useful:

begin
 dbms_stats.set_table_prefs(
 user,
 'SALES',
 'method_opt',
 'for all columns size auto for columns size 254 col1 col2');
end;
/

1 More information on the creation of histograms can be found in part one of this white paper series: Understanding Optimizer Statistics Oracle Database 19c.

8 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

Histogram creation is disabled if METHOD_OPT is set to ' FOR ALL COLUMNS SIZE 1 ' . For example, you can change the

DBMS_STATS global preference for METHOD_OPT so that histograms are not created by default:

begin
 dbms_stats.set_global_prefs(
 'method_opt',
 'for all columns size 1');
end;
/

Unwanted histograms can be dropped without dropping all column statistics by using DBMS_STATS.DELETE_COLUMN_STATS and

setting the col_stat_type to ‘HISTOGRAM’.

Manual Statistics Collection

If you already have a well-established statistics gathering procedure or if for some other reason you want to disable automatic statistics

gathering for your main application schema, consider leaving it on for the dictionary tables. You can do so by changing the value of

AUTOSTATS_TARGET parameter to ORACLE instead of AUTO using DBMS_STATS.SET_GLOBAL_PREFS procedure.

exec dbms_stats.set_global_prefs('autostats_target','oracle')

To manually gather statistics you should use the PL/SQL DBMS_STATS package. The obsolete, ANALYZE command should not be

used. The package DBMS_STATS provides multiple DBMS_STATS.GATHER_*_STATS procedures to gather statistics on user schema

objects as well as dictionary and fixed objects. Ideally you should let all of the parameters for these procedures default except for

schema name and object name. The defaults and adaptive parameter settings chosen by the Oracle are sufficient in most cases:

exec dbms_stats.gather_table_stats(' sh ','sales')

As mentioned above, if it does become necessary to change the default value of one of the statistics gathering parameters, using the

DBMS_STATS.SET_*_PREF procedures to make the change at the smallest scope possible, ideally on a per-object bases.

Pending Statistics

When making changes to the default values of the parameter in the DBMS_STATS.GATHER_*_STATS procedures, it is highly

recommended that you validate those changes before making the change in a production environment. If you don’t have a full scale test

environment you should take advantage of pending statistics. With pending statistics, instead of going into the usual dictionary tables,

the statistics are stored in pending tables so that they can be enabled and tested in a controlled fashion before they are published and

used system-wide. To activate pending statistics collection, you need to use one of the DBMS_STATS.SET_*_PREFS procedures to

change value of the parameter PUBLISH from TRUE (default) to FALSE for the object(s) you wish to create pending statistics for. In the

example below, pending statistics are enabled on the SALES table in the SH schema and then statistics are gathered on the SALES

table:

exec dbms_stats.set_table_prefs(' sh ','sales','publish','false')

Gather statistics on the object(s) as normal:

exec dbms_stats.gather_table_stats(' sh ','sales')

The statistics gathered for these objects can be displayed using the dictionary views called USER_*_PENDING_STATS.

You can enable the usage of pending statistics by issuing an alter session command to set the initialization parameter

OPTIMIZER_USE_PENDING_STATS to TRUE. After enabling pending statistics, any SQL workload run in this session will use the new

non-published statistics. For tables accessed in the workload that do not have pending statistics the optimizer will use the current

statistics in the standard data dictionary tables. Once you have validated the pending statistics, you can publish them using the

procedure DBMS_STATS.PUBLISH_PENDING_STATS.

exec dbms_stats.publish_pending_stats('sh','sales')

9 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

WHEN TO GATHER STATISTICS

In order to select an optimal execution plan the optimizer must have representative statistics. Representative statistics are not

necessarily up to the minute statistics but a set of statistics that help the optimizer to determine the correct number of rows it should

expect from each operation in the execution plan.

Automatic Statistics Gathering Task

Oracle automatically collects statistics for all database objects, which are missing statistics or have stale statistics during a predefined

maintenance window (10pm to 2am weekdays and 6am to 2am at the weekends). You can change the maintenance window that the

job will run in via Enterprise Manager or using the DBMS_SCHEDULER and DBMS_AUTO_TASK_ADMIN packages.

Figure 3: Changing the maintenance window during which the auto stats gathering job runs

If you already have a well-established statistics gathering procedure or if for some other reason you want to disable automatic statistics

gathering you can disable the task altogether:

begin
 dbms_auto_task_admin.disable(
 client_name=>'auto optimizer stats collection',
 operation=>null,
 window_name=>null);
end;
/

10 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

Manual Statistics Collection

If you plan to manually maintain optimizer statistics you will need to determine when statistics should be gathered.

You can determine when statistics should be gathered based on staleness, as it is for the automatic job, or based on when new data is

loaded in your environment. It is not recommended to continually re-gather statistics if the underlying data has not changed significantly

as this will unnecessarily waste system resources.

If data is only loaded into your environment during a pre-defined ETL or ELT job then the statistics gathering operations can be

scheduled as part of this process. You should try and take advantage of online statistics gathering and incremental statistics as part of

your statistics maintenance strategy.

Online Statistics Gathering for Direct Path Load

Online statistics gathering for direct path load “piggybacks” statistics gather as part of a direct-path data loading operation such as,

create table as select (CTAS) and insert as select (IAS) operations. Gathering statistics as part of the data loading operation means no

additional full data scan is required to have statistics available immediately after the data is loaded.

Figure 4: Online statistic gathering provides both table and column statistics for newly created SALES2 table

11 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

Online statistics gathering does not gather histograms or index statistics, as these types of statistics require additional data scans,

which could have a large impact on the performance of the data load. To gather the necessary histogram and index statistics without

re-gathering the base column statistics use the DBMS_STATS.GATHER_TABLE_STATS procedure with the new options parameter set

to GATHER AUTO. Note that for performance reasons, GATHER AUTO builds histogram using a sample of rows rather than all rows in

the table.

Figure 5: Set options to GATHER AUTO creates histograms on SALES2 table without regarding the base statistics

The notes column “HISTOGRAM_ONLY” indicates that histograms were gathered without re-gathering basic column statistics. There

are two ways to confirm online statistics gathering has occurred: check the execution plan to see if the new row source OPTIMIZER

STATISTICS GATHERING appears in the plan or look in the new notes column of the USER_TAB_COL_STATISTICS table for the

status STATS_ON_LOAD.

Figure 6: Execution plan for an on-line statistics gathering operation

Since online statistics gathering was designed to have a minimal impact on the performance of a direct path load operation it can only

occur when data is being loaded into an empty object. To ensure online statistics gathering kicks in when loading into a new partition of

an existing table, use extended syntax to specify the partition explicitly. In this case partition level statistics will be created but global

level (table level) statistics will not be updated. If incremental statistics have been enabled on the partitioned table a synopsis will be

created as part of the data load operation.

Online statistics gathering can be disabled for individual SQL statements using the NO_GATHER_OPTIMIZER_STATISTICS hint.

12 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

High-frequency Optimizer Statistics Collection

This Oracle Database 19c new feature is available on certain Oracle Database platforms. Check the Oracle Database Licensing Guide for more

information.

CHALLENGES TO MAINTAINING ACCURATE OPTIMIZER STATISTICS

Stale statistics can mislead the optimizer and, in some cases, can result in sub-optimal execution plans. To help address this, automatic

optimizer statistics collection was introduced in Oracle 11g. The automated maintenance task infrastructure schedules statistics

gathering to occur in maintenance windows. By default, one window is scheduled for each day of the week and statistics collection runs

in all predefined maintenance windows.

For highly volatile environments, where data changes drastically in a short period time, daily statistics gathering may not be sufficient to

ensure that SQL execution plans remain optimal.

HIGH FREQUENCY AUTOMATIC STATISTICS COLLECTION

New to Oracle Database 19c, high-frequency automatic statistics collection is introduced as a complement to the existing auto task and

real-time statistics (see below).

An automatic task frequently inspects the database to establish if there are any stale statistics. If stale statistics are found they will be

refreshed. This process is decoupled from the maintenance window.

This feature is enabled as follows:

SQL> exec dbms_stats.set_global_prefs('AUTO_TASK_STATUS','ON') /* OFF to disable */

Where considered necessary, the DBA can customize the frequency of inspection and the maximum run-time for gathering statistics

(per iteration) according to the requirements of a particular system. Note that the existing automatic statistics collection running in the

predefined maintenance window will not be affected, and high-frequency automatic statistics task will not start while statistics are being

gathered in the maintenance window. Defaults can be adjusted as follow, and the units are in seconds:

SQL> exec dbms_stats.set_global_prefs('AUTO_TASK_INTERVAL','900') /* This is the default */
SQL> exec dbms_stats.set_global_prefs('AUTO_TASK_MAX_RUN_TIME','3600') /* This is the default */

Current settings can be viewed as follows:

SQL> select db ms_stats.get_prefs('AUTO_TASK_STATUS') from dual;
SQL> select dbms_stats.get_prefs('AUTO_TASK_INTERVAL') from dual;
SQL> select dbms_stats.get_prefs('AUTO_TASK_MAX_RUN_TIME') from dual;

In contrast to the automatic statistics collection job, which will be invoked during the maintenance window, the high-frequency task will

only take care of gathering statistics for stale objects. Other auxiliary actions (such as calling stats advisor) are done during the

maintenance window.

Execution statistics available in the following DBA view:

select start_time, end_time, failed, t i med_out
from DBA_AUTO_STAT_EXECUTIONS
where origin = ' HIGH_FREQ_AUTO_TASK'
order by start_time ;

13 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

Real-time Statistics

This Oracle Database 19c new feature is available on certain Oracle Database platforms. Check the Oracle Database Licensing Guide for more

information.

CHALLENGES TO MAINTAINING ACCURATE OPTIMIZER STATISTICS

As mentioned above, stale statistics can result in sub-optimal SQL execution plans and keeping them accurate in highly volatile

systems can be challenging. High-frequency statistics gathering helps to resolving this, but a more ideal solution would be to maintain

statistics as changes to the data in the database are made.

REAL-TIME STATISTICS

Real-time statistics extends statistic gathering techniques to the conventional DML operations INSERT, UPDATE and MERGE. When

these DML operations are executed on the data in the database, the most essential optimizer statistics are maintained in real time. This

applies both the individual row and bulk operations.

Real-time statistics augment those collected by the automatic statistics gathering job, high-frequency stats gathering or those gathered

manually using the DBMS_STATS API. An accurate picture of the data in the database is therefore maintained at all times, which

results in more optimal SQL execution plans.

Real-time statistics are managed automatically, and no intervention from the database administrator is required. Developers may

choose to disable online statistics gathering for individual SQL statements using the NO_GATHER_OPTIMIZER_STATISTICS hint.

Real-time statistics can be viewed as follows:

select table_name, num_rows, blocks
from user_tab_statistics
where notes = 'STATS_ON_CONVENTIONAL_DML';

select table_n ame, column_name, low_value, high_value
from user_tab_col_statistics
where notes = 'STATS_ON_CONVENTIONAL_DML';

Note that real-time statistics are calculated in real time and the values are persisted to disk periodically. It can take a few minutes for

the values to appear in the data dictionary views.

14 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

The use of real-time statistics is revealed in the SQL execution plan:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(format=>'TYPICAL'));

PLAN_TABLE_OUTPUT

SQL_ID 9uq8aaahp0 b3u, child number 0

select count(*) from load where a < 10

Plan hash value: 3743925786

| Id | Operation | Name | Rows | Bytes | C ost (%CPU)| Time |

0	SELECT STATEMENT				7 (100)	
1	SORT AGGREGATE		1	6		
* 2	TABLE ACCESS FULL	LOAD	10000	60000	7 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - filter("A"<10)

Note

 - dynamic statistics used: statistics for conventional DML

Incremental Statistics and Partition Exchange Data Loading

Gathering statistics on partitioned tables consists of gathering statistics at both the table level (global statistics) and (sub)partition level.

If the INCREMENTAL3 preference for a partitioned table is set to TRUE, the DBMS_STATS.GATHER_*_STATS parameter GRANULARITY

includes GLOBAL, and ESTIMATE_PERCENT is set to AUTO_SAMPLE_SIZE, Oracle will accurately derive all global level statistics

by scanning only those partitions that have been added or modified, and not the entire table. Incremental global statistics works by

storing a synopsis for each partition in the table. A synopsis is statistical metadata for that partition and the columns in the partition.

Aggregating the partition level statistics and the synopses from each partition will accurately generate global level statistics, thus

eliminating the need to scan the entire table. When a new partition is added to the table, you only need to gather statistics for the new

partition. The table level statistics will be automatically and accurately calculated using the new partition synopsis and the existing

partitions’ synopses.

Note that partition statistics are not aggregated from subpartition statistics when incremental statistics are enabled.

If you are using partition exchange loads and wish to take advantage of incremental statistics, you will need to set the DBMS_STATS

table preference INCREMENTAL_LEVEL on the non-partitioned table to identify that it will be used in partition exchange load. By setting

the INCREMENTAL_LEVEL to TABLE (default is PARTITION), Oracle will automatically create a synopsis for the table when statistics

are gathered on it. This table level synopsis will then become the partition level synopsis after the exchange.

However, if your environment has more trickle feeds or online transactions that only insert a small number of rows but these operations

occur throughout the day, you will need to determine when your statistics are stale and then trigger the automated statistics gathering

task. If you plan to rely on the STALE_STATS column in USER_TAB_STATISTICS to determine if statistics are stale you should be

aware that this information is updated on a daily basis only. If you need more timely information on what DML has occurred on your

tables you will need to look in USER_TAB_MODIFICATIONS, which lists the number of INSERTS, UPDATES, and DELETES that occurs

on each table, whether the table has been truncated (TRUNCATED column) and calculate staleness yourself. Again, you should note this

information is automatically updated, from memory, periodically. If you need the latest information you will need to manual flush the

information using the DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO function.

3 More information can be found in part one of this white paper series, Understanding Optimizer Statistics with Oracle Database 19c.

15 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

Preventing "Out of Range" Condition

Regardless of whether you use the automated statistics gathering task or you manually gather statistics, if end-users start to query

newly inserted data before statistics have been gathered, it is possible to get a suboptimal execution plan due to stale statistics, even if

less than 10% of the rows have changed in the table. One of the most common cases of this occurs when the value supplied in a where

clause predicate is outside the domain of values represented by the [minimum, maximum] column statistics. This is commonly known

as an ‘out-of-range’ error. In this case, the optimizer prorates the selectivity based on the distance between the predicate value, and the

maximum value (assuming the value is higher than the max), that is, the farther the value is from the maximum or minimum value, the

lower the selectivity will be.

This scenario is very common with range partitioned tables. A new partition is added to an existing range partitioned table, and rows

are inserted into just that partition. End-users begin to query this new data before statistics have been gathered on this new partition.

For partitioned tables, you can use the DBMS_STATS.COPY_TABLE_STATS4 procedure (available from Oracle Database 10.2.0.4

onwards) to prevent "Out of Range" conditions. This procedure copies the statistics of a representative source [sub] partition to the

newly created and empty destination [sub] partition. It also copies the statistics of the dependent objects: columns, local (partitioned)

indexes, etc. and sets the high bound partitioning value as the max value of the partitioning column and high bound partitioning value of

the previous partition as the min value of the partitioning column. The copied statistics should only be considered as temporary solution

until it is possible to gather accurate statistics for the partition. Copying statistics should not be used as a substitute for actually

gathering statistics.

Note by default, DBMS_STATS.COPY_TABLE_STATS only adjust partition statistics and not global or table level statistics. If you want

the global level statistics to be updated for the partition column as part of the copy you need to set the flags parameter of the

DBMS_STATS.COPY_TABLE_STATS to 8.

For non-partitioned tables you can manually set the max value for a column using the DBMS_STATS.SET_COLUMN_STATS procedure.

This approach is not recommended in general and is not a substitute for actually gathering statistics.

'Real-time Statistics' mitigates the risk of encountering out of range scenarios –see page 13.

4 See Understanding Optimizer Statistics With Oracle Database 19c.

16 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

ASSURING THE QUALITY OF OPTIMIZER STATISTICS

Good quality statistics are essential to be able to generate optimal SQL execution plans, but sometimes statistics can be of poor quality

and this fact could remain unnoticed. For example, older “inherited” systems might use scripts that are no longer understood by the

database administrators and, understandably, there is a reluctance to change them. However, because Oracle continuously enhances

statistics gathering features it is possible that best practice recommendations will be neglected.

For these reasons, Oracle Database 19c an advisor called the Optimizer Statistics Advisor to help you to improve the quality of

statistics in the database. This diagnostic software analyzes information in the data dictionary, assesses the quality of statistics and

discovers how statistics are being gathered. It will report on poor and missing statistics and generate recommendations to resolve these

problems.

The principle behind its operation is to apply best-practice Rules to uncover potential problems. These problems are reported as a

series of Findings, which in turn can lead to specific Recommendations. Recommendations can be implemented automatically using

Actions (either immediately or via an auto-generated script to be executed by the database administrator).

Figure 7: The Optimizer Statistics Advisor

The advisor task runs automatically in the maintenance window, but it can also be run on demand. The HTML or text report generated

by the advisor can be viewed at any time and the actions can be implemented at any time.

Figure 8 illustrates an example of a specific rule that leads to a finding, a recommendation and then an action to resolve the problem:

Figure 8: Example of a rule, finding, recommendation and action.

17 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

The advisor task gathers and stores data in the data dictionary. It is a low performance overhead operation because it performs an

analysis of optimizer statistics and statistics gathering information (that’s already held in the data dictionary). It does not perform a

secondary analysis of data stored in application schema objects.

Figure 9: Reading the data dictionary, executing the task via a filter and storing the results.

Once the task is complete, the report can be generated in HTML or text format and an action (SQL) script can be created too.

Figure 10: Reporting on the advisor task and generating the action SQL script.

It is a simple matter to view the report generated by the automated task:

select dbms_stats.report_advisor_task(' auto_stats_advisor_task ') as report from dual;

Alternatively, users with the ADVISOR privilege can execute the task manually and report on the results using the following three-step

process:

DECLARE
 tname VARCHAR2(32767) := 'demo'; -- task name
BEGIN
 tname := dbms_stats.create_advisor_task(tname);
END;
/
DECLARE
 tname VARCHAR2(32767) := 'demo'; -- task name
 ename VARCHAR2(32767) := NULL; -- execute name
BEGIN
 ename := dbms_stats.execute_advisor_task(tname);
END;
/
SELECT dbms_stats.report_advisor_task('demo') AS report
FROM dual;

The actions generated by the advisor can be implemented immediately:

DECLARE
 tname VARCHAR2 (32767) := 'demo'; -- task name
 impl_result CLOB; -- report of
 implementation
BEGIN
 impl_result := dbms_stats.implement_adviso r_task(tname);
END;
/

In addition, Oracle Database 19c Real Application Testing includes useful performance assurance features such as SQL Performance

Advisor Quick Check.

18 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

GATHERING STATISTICS MORE QUICKLY

As data volumes grow and maintenance windows shrink, it is more important than ever to gather statistics in a timely manner. Oracle

offers a variety of ways to speed up the statistics collection, from parallelizing the statistics gathering operations to generating statistics

rather than collecting them.

Using Parallelism

Parallelism can be leveraged in several ways for statistics collection

¶ Using the DEGREE parameter

¶ Concurrent statistics gathering

¶ A combination of both DEGREE and concurrent gathering

USING THE DEGREE PARAMETER

The DBMS_STATS, DEGREE parameter controls the number of parallel execution processes that will be used to gather the statistics.

By default Oracle uses the same number of parallel server processes specified as an attribute of the table in the data dictionary

(Degree of Parallelism). All tables in an Oracle database have this attribute set to 1 by default. It may be useful to explicitly set this

parameter for the statistics collection on a large table to speed up statistics collection.

Alternatively you can set DEGREE to AUTO_DEGREE; Oracle will automatically determine the appropriate number of parallel server

processes that should be used to gather statistics, based on the size of an object. The value can be between 1 (serial execution) for

small objects to DEFAULT_DEGREE (PARALLEL_THREADS_PER_CPU X CPU_COUNT) for larger objects.

Figure 11: Using parallelism via the DEGREE parameter

You should note that setting the DEGREE for a partitioned table means that multiple parallel sever processes will be used to gather

statistics on each partition but the statistics will not be gathered concurrently on the different partitions. Statistics will be gathered on

each partition one after the other.

Concurrent Statistic Gathering

Concurrent statistics gathering enables statistics to be gathered on multiple tables in a schema (or database), and multiple

(sub)partitions within a table concurrently. Gathering statistics on multiple tables and (sub)partitions concurrently can reduce the overall

time it takes to gather statistics by allowing Oracle to fully utilize a multi-processor environment.

Concurrent statistics gathering is controlled by the global preference, CONCURRENT, which can be set to MANUAL, A UTOMATIC, ALL,

OFF. By default it is set to OFF. When CONCURRENT is enabled, Oracle employs Oracle Job Scheduler and Advanced Queuing

components to create and manage multiple statistics gathering jobs concurrently.

Calling DBMS_STATS.GATHER_TABLE_STATS on a partitioned table when CONCURRENT is set to MANUAL or ALL , causes Oracle to

create a separate statistics gathering job for each (sub)partition in the table. How many of these jobs will execute concurrently, and how

many will be queued is based on the number of available job queue processes (JOB_QUEUE_PROCESSES initialization parameter, per

node on a RAC environment) and the available system resources. As the currently running jobs complete, more jobs will be dequeued

and executed until all of the (sub)partitions have had their statistics gathered.

19 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

If you gather statistics using DBMS_STATS.GATHER_DATABASE_STATS, DBMS_STATS.GATHER_SCHEMA_STATS, or

DBMS_STATS.GATHER_DICTIONARY_STATS, then Oracle will create a separate statistics gathering job for each non-partitioned table,

and each (sub)partition for the partitioned tables. Each partitioned table will also have a coordinator job that manages its (sub)partition

jobs. The database will then run as many concurrent jobs as possible, and queue the remaining jobs until the executing jobs complete.

However, to prevent possible deadlock scenarios multiple partitioned tables cannot be processed simultaneously. Hence, if there are

some jobs running for a partitioned table, other partitioned tables in a schema (or database or dictionary) will be queued until the

current one completes. There is no such restriction for non-partitioned tables.

Figure 12 illustrates the creation of jobs at different levels, when a DBMS_STATS.GATHER_SCHEMA_STATS command has been issued

on the SH schema. Oracle will create a statistics gathering job (Level 1 in Figure 12) for each of the non-partitioned tables;

¶ CHANNELS

¶ COUNTRIES

¶ TIMES

Oracle will create a coordinator job for each partitioned table: SALES and COSTS, which in turn creates a statistics gathering job for

each of partition in SALES and COSTS tables, respectively (Level 2 in Figure 12).

Figure 12: List of the statistics gathering job created when Concurrent Statistics Gathering occurs on the SH schema

Each of the individual statistics gathering jobs can also take advantage of parallel execution if the DEGREE parameter is specified.

If a table, partition, or sub-partition is very small or empty, the database may automatically batch the object with other small objects into

a single job to reduce the overhead of job maintenance.

Configuring Concurrent Statistics Gathering

The concurrency setting for statistics gathering is turned off by default. It can be turned on as follows:

exec dbms_stats.set_global_prefs(' concurrent ' , ' all ')

You will also need some additional privileges above and beyond the regular privileges required to gather statistics. The user must have

the following Job Scheduler and AQ privileges:

¶ CREATE JOB

¶ MANAGE SCHEDULER

¶ MANAGE ANY QUEUE

20 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

The SYSAUX tablespace should be online, as the Job Scheduler stores its internal tables and views in SYSAUX tablespace. Finally, the

JOB_QUEUE_PROCESSES parameter should be set to fully utilize all of the system resources available (or allocated) for the statistics

gathering process. If you don't plan to use parallel execution you should set the JOB_QUEUE_PROCESSES to 2 X total number of CPU

cores (this is a per node parameter in a RAC environment). Please make sure that you set this parameter system-wise (ALTER

SYSTEM ... or in init.ora file) rather than at the session level (ALTER SESSION).

If you are going to use parallel execution as part of concurrent statistics gathering you should disable the parallel adaptive multi user:

ALTER SYSTEM SET parallel_adaptive_multi_user=false;

Resource manager must be activated using, for example:

ALTER SYSTEM SET resource_manager_plan = 'DEFAULT_PLAN';

It is also recommended that you enable parallel statement queuing. This requires resource manager to be activated, and the creation of

a temporary resource plan where the consumer group "OTHER_GROUPS" should have queuing enabled. By default, Resource Manager

is activated only during the maintenance windows. The following script illustrates one way of creating a temporary resource plan

(pqq_test), and enabling the Resource Manager with this plan.

-- connect as a user with dba privileges
begin
 dbms_resource_manager.create_pending_area();
 dbms_resource_manager.create_plan('pqq_test', 'pqq_test');
 dbms_resource_manager.create_plan_directive(
 'pqq_test',
 'OTHER_GROUPS',
 'OTHER_GROUPS directive for pqq',
 parallel_target_percentage => 90);
 dbms_resource_manager.submit_pending_area();
end;
/
ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'pqq_test' SID='*';

If you want the automated statistics gathering task to take advantage of concurrency, set CONCURRENT to either AUTOMATIC or ALL. A

new ORA$AUTOTASK consumer group has been added to the Resource Manager plan used during the maintenance window, to ensure

concurrent statistics gathering does not use too much of the system resources.

WHEN NOT TO GATHER STATISTICS

Although the optimizer needs accurate statistics to select an optimal plan, there are scenarios where gathering statistics can be difficult,

too costly, or cannot be accomplished in a timely manner and an alternative strategy is required.

Volatile Tables

A volatile table is one where the volume of data changes dramatically over time. For example, an orders queue table, which at the start

of the day the table is empty. As the day progresses and orders are placed the table begins to fill up. Once each order is processed it is

deleted from the tables, so by the end of the day the table is empty again. If you relied on the automatic statistics gather job to maintain

statistics on such tables then the statistics would always show the table was empty because it was empty over night when the job ran.

However, during the course of the day the table may have hundreds of thousands of rows in it.

In scenarios such as this, you may choose to rely on high-frequency statistics gathering instead (see above) - assuming your planform

and database version supports it. Alternatively, it is often appropriate to gather a representative set of statistics for the table during the

day when the table is populated and then lock them. Locking the statistics will prevent high-frequency statistics gathering and the

automated statistics gathering job from overwriting them. This approach is especially applicable for highly volatile tables where the

number of rows grows and shrinks significantly during the course of the day.

Alternatively, you can rely on dynamic sampling to gather statistics on these tables. The optimizer uses dynamic sampling during the

compilation of a SQL statement to gather basic statistics on the tables before optimizing the statement. Although the statistics gathered

by dynamic sampling are not as high a quality or as complete as the statistics gathered using the DBMS_STATS package, they are often

good enough in many cases.

21 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

Global Temporary Tables

Global temporary tables are often used to store intermediate results in an application context. A global temporary table shares its

definition system-wide with all users with appropriate privileges, but the data content is always session-private. No physical storage is

allocated unless data is inserted into the table. A global temporary table can be transaction specific (delete rows on commit) or session-

specific (preserves rows on commit). Gathering statistics on transaction specific tables leads to the truncation of the table. In contrast, it

is possible to gather statistics on a global temporary table (that persist rows) but in previous releases its wasn’t always a good idea as

all sessions using the GTT had to share a single set of statistics so a lot of systems relied on dynamic statistics.

However, in Oracle Database 19c, it is possible to have a separate set of statistics for every session using a GTT. Statistics sharing on

a GTT is controlled using a new DBMS_STATS preference GLOBAL_TEMP_TABLE_STATS. By default the preference is set to SESSION,

meaning each session accessing the GTT will have its own set of statistics. The optimizer will try to use session statistics first but if

session statistics do not exist, then optimizer will use shared statistics.

Figure 13: Changing the default behavior of not sharing statistics on a GTT to forcing statistics sharing

If you have upgraded from Oracle Database 11g and if database applications have not been modified to take advantage of SESSION

statistics for GTTs, you may want to keep GTT behavior consistent with the pre-upgrade environment by setting the DBMS_STATS

preference GLOBAL_TEMP_TABLE_STATS to SHARED (at least until applications have been updated).

22 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

When populating a GTT (that persists rows on commit) using a direct path operation, session level statistics will be automatically

created due to online statistics gathering, which will remove the necessity to run additional statistics gathering command and will not

impact the statistics used by any other session.

Figure 14: Populating a GTT using a direct path operation results in session level statistics being automatically gathered

Intermediate Work Tables

Intermediate work tables are typically seen as part of an ELT process or a complex transaction. These tables are written to only once,

read once, and then truncated or deleted. In such cases the cost of gathering statistics outweighs the benefit, since the statistics will be

used just once. Instead dynamic sampling should be used in these cases. It is recommended you lock statistics on intermediate work

tables that are persistent to prevent the automated statistics gathering task from attempting to gather statistics on them.

GATHERING OTHER TYPES OF STATISTICS

Since the Cost Based Optimizer is now the only supported optimizer, all tables in the database need to have statistics, including all of

the dictionary tables (tables owned by SYS,SYSTEM, etc., and residing in the system and SYSAUX tablespace) and the x$ tables used

by the dynamic v$ performance views.

Dictionary Statistics

Statistics on the dictionary tables are maintained via the automated statistics gathering task run during the nightly maintenance window.

It is highly recommended that you allow the automated statistics gather task to maintain dictionary statistics even if you choose to

switch off the automatic statistics gathering job for your main application schema. You can do this by changing the value of

AUTOSTATS_TARGET to ORACLE instead of AUTO using the procedure DBMS_STATS.SET_GLOBAL_PREFS.

exec dbms_stats.set_global_prefs('autostats_target','oracle')

23 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

Fixed Object Statistics

Fixed object statistics are collected by the automated statistics gathering task if they have not been previously collected. Beyond that,

the database does not gather fixed object statistics. Unlike other database tables, dynamic sampling is not automatically used for SQL

statements involving X$ tables when optimizer statistics are missing so the optimizer uses predefined default values for the statistics if

they are missing. These defaults may not be representative and could potentially lead to a suboptimal execution plan, which could

cause severe performance problems in your system. It is for this reason that we strongly recommend you manually gather fixed objects

statistics.

You can collect statistics on fixed objects using DBMS_STATS.GATHER_FIXED_OBJECTS_STATS procedure. Because of the transient

nature of the x$ tables it is import that you gather fixed object statistics when there is a representative workload on the system. This

may not always be feasible on large systems due to additional resources needed to gather the statistics. If you can’t do it during peak

load you should do it after the system has warmed up and the three key types of fixed object tables have been populated:

¶ Structural data - for example, views covering datafiles, controlfile contents, etc.

¶ Session based data - for example, v$session, v$access , etc.

¶ Workload data - for example, vsql, vsql_plan , etc.

It is recommended that you re-gather fixed object statistics if you do a major database or application upgrade, implement a new

module, or make changes to the database configuration. For example if you increase the SGA size then all of the x$ tables that contain

information about the buffer cache and shared pool may change significantly, such as x$ tables used in v$buffer_pool or

v$shared_pool_advice .

System Statistics

System statistics enable the optimizer to cost an execution plan by using information about the actual system hardware executing the

statement, such as CPU speed and IO performance.

System statistics are automatically initialized with default values, which are suitable for most systems. Oracle recommends that you do

not gather them independently of this mechanism (i.e. there is no requirement to use the DBMS_STATS.GATHER_SYSTEM_STATS API).

24 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

CONCLUSION

In order for the Oracle Optimizer to accurately determine the cost for an execution plan it must have accurate statistics about all of the

objects (table and indexes) accessed in the SQL statement and information about the system on which the SQL statement will be run.

This two part white paper series explains in detail what optimizer statistics are necessary, how they are used, and the different statistics

collection method available to you.

By using a combination of the automated statistics gathering task and the other techniques described in this paper a DBA can maintain

an accurate set of statistics for their environment and ensure the optimizer always has the necessary information in order to select the

most optimal plan. Once a statistics gathering strategy has been put in place, changes to the strategy should be done in a controlled

manner and take advantage of key features such as pending statistics to ensure they do not have an adverse effect on application

performance.

25 WHITE PAPER / Best Practices for Gathering Optimizer Statistics with Oracle Database 19c

REFERENCES

1. Oracle white paper: Understanding Optimizer Statistics with Oracle Database 19c

2. Oracle white paper: Optimizer with Oracle Database 19c

ORACLE CORPORATION

Worldwide Headquarters

500 Oracle Parkway, Redwood Shores, CA 94065 USA

Worldwide Inquiries

TELE + 1.650.506.7000 + 1.800.ORACLE1

FAX + 1.650.506.7200

oracle.com

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com/oracle facebook.com/oracle twitter.com/oracle

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are

subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed

orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission. This device has

not been authorized as required by the rules of the Federal Communications Commission. This device is not, and may not be, offered for sale or lease,

or sold or leased, until authorization is obtained. (THIS FCC DISLAIMER MAY NOT BE REQUIRED. SEE DISCLAIMER SECTION ON PAGE 2 FOR

INSTRUCTIONS.)

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks

of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 1219

White Paper Best Practices for Gathering Optimizer Statistics with Oracle Database 19cSQL Plan Management in Oracle Database 19cSql Plan

Management In Oracle Database 19c

December 2019December 2019

Author: [OPTIONAL]

Contributing Authors: [OPTIONAL]

https://www.oracle.com/
http://www.oracle.com/contact

